Proof of the Hardy-Littlewood K-tuple Conjecture in the Distribution of Numbers Coprime with the Primorial

Tim Samshuijzen TimSamshuijzen@gmail.com Wageningen, Netherlands January 2025

Abstract

In the symmetries in the numbers that are coprime with the primorial we find proof of the existence of infinitely many twin primes and prime k-tuples. By using sieving methods, we derive three main results that prove the Hardy-Littlewood K-tuple Conjecture and the Twin Prime Conjecture. The first result is that we construct a primorial-based sieve and derive exact formulae for the number of candidate k-tuples (candidate k-tuples are constellations of numbers coprime with the primorial) per iteration of the sieve, from which we derive the same formulation for the Twin Prime Constant as Hardy and Littlewood using their circle method. The purpose of the first result is to demonstrate that the derivations from our sieving model agree with well-known results. The second result is that the average density of candidate k-tuples in an arbitrary region that spans $(p_{n+1}^2 - p_n^2)$ increases with increasing n, where p_n is the *n*-th prime, implying that the K-tuple Conjecture is true if the distribution of candidate prime k-tuples in an arbitrary small region is uniform on average per iteration of the sieve. The third result is that we prove that the distribution of candidate k-tuples is cryptographically guaranteed to be uniform on average in arbitrary small regions, and show how it is impossible for the sieve to sustain any bias toward localized elimination of candidate primes ahead of p_n^2 (the border of candidate elimination), even if we were to intentionally tamper with the candidate elimination process. We conclude that no matter how many times you sieve, there will forever be new opportunities for candidate k-tuples to survive the elimination process until p_n^2 passes over. We conclude that Hardy and Littlewood's formulations of statistical predictions concerning prime k-tuples and twin primes are correct.

1 Introduction

The Hardy-Littlewood K-tuple Conjecture stands as one of the most long-standing problems in analytic number theory. Proposed by G. H. Hardy and J. E. Littlewood in their 1923 paper *Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes* [1], as part of their broader investigations into the distribution of primes, the conjecture is a cornerstone of their circle method approach. It asserts that given a set of k linear forms, where each form is $n + a_i$ with distinct constants a_1, a_2, \ldots, a_k , there are infinitely many integers n such that all k values produced by these forms are simultaneously prime, provided there are no inherent modular restrictions preventing this. In other words, it predicts the asymptotic frequency with which certain patterns of primes appear.

In this paper, we present a proof of the Hardy-Littlewood K-tuple Conjecture. The starting point of our proof is the description of a sieve that generates all the primes. This sieve, the *bitstring sieve*, is an abstract model of the most simple digital computing machine that generates the primes, running the smallest program of binary instructions, and given access to unlimited memory for storing its internal state. We derived this minimal program from the periodicities and symmetries observed in the sequence of least prime factors (OEIS A020639). An Internet search reveals that the bitstring sieve is equivalent to the sieve that was first conceived independently by Pete Quinn [2], who shared his design and idea in a thread on primegrid.com in 2011. No further references to this particular design were found.

The bitstrings generated by the bitstring sieve is a description of the creation and elimination of *candidate primes*, telling the story of how candidate primes become either primes or composites. Candidate primes are the numbers coprime with the primorial, represented as bit value 1. The visual pattern of 1s in a bitstring show clearly the periodicities and symmetries in the numbers coprime with the primorial. These patterns, often called *primorial patterns*, are well known. Primorial patterns are the symmetric and periodic patterns observed at the primorial scale when generating the primes by means of a sieving process, such as with the sieve of Eratosthenes. A practical application that utilizes primorial patterns is, for example, the Sieve of Pritchard, or wheel sieve. Examples of theoretical work on primorial patterns are: Dennis R. Martin's Proofs Regarding Primorial Patterns 2006 [3] and On the Infinite Series Characterizing the Elimination of Twin Prime Candidates 2006 [4], Mario Ziller's On differences between consecutive numbers coprime to primorials 2020 [5], and Fred B. Holt's Patterns among the Primes 2022 [6]. There exist many more online resources about primorial patterns than cited here.

2 The Bitstring Sieve

Let us construct a sieve that generates all the primes. Let this sieve, which we call the *bitstring sieve*, serve as our definition of the primes. The sieve is defined as a recurrence relation such that its output is its input for the next iteration.

Let S be the set of outputs generated by the bitstring sieve. S represents the

total state space of the bitstring sieve. For each p_n , where p_n is the *n*-th prime, there is a sequence $S_{p_n} \in S$:

$$S = \{S_2, S_3, S_5, S_7, S_{11}, \dots\}$$

Each sequence S_{p_n} is a *bitstring*, a finite-length sequence of binary digits $S_{p_n} \in \{0,1\}^*$.

Let a bitstring be noted as (b_1, b_2, \dots, b_n) , where each $b_i \in \{0, 1\}$ and n is the length of the bitstring. For example, bitstring (1, 0, 0, 0, 1, 0) has length 6.

Notation:

- (b_1, b_2, \cdots, b_n) : Represents individual bits in the bitstring.
- |s|: The length of the bitstring s.
- s[i]: The *i*-th bit in the bitstring *s*, where indexing starts from 1.

The bitstrings of S are generated by the following recurrence relation.

Initial condition:

Let S_1 be the bitstring (1). S_1 is not a member of S, but it serves to get the recurrence relation started. We can regard 1 as the 0-th prime.

$$S_1 = (1)$$

Recurrence relation:

Given bitstring S_{p_n} , where p_n is the *n*-th prime, the next bitstring $S_{p_{n+1}}$ is obtained by:

$$p_{n+1} = NEXT1(S_{p_n})$$

$$S_{p_{n+1}} = AND(CONCAT(S_{p_n}, p_{n+1}), NOT(STRETCH(S_{p_n}, p_{n+1})))$$
(1)

The set of functions NEXT1, AND, CONCAT, NOT and STRETCH is the *instruction set* of the bitstring sieve. The instruction set is defined as follows:

NEXT

Let $NEXT1(s): \{0,1\}^k \to \mathbb{Z}$ be a function that takes as input bitstring s, and returns the (1-based) index of the first occurrence of 1 in s after the first 1 at index 1 (or the length of the bitstring s plus 1 if such an occurrence does not exist), as defined in:

$$NEXT1(s) = \begin{cases} \text{index of first 1 in } s \text{ after index 1,} & \text{if such 1 exists} \\ |s|+1, & \text{otherwise} \end{cases}$$

\mathbf{AND}

Let $AND(s1, s2) : \{0, 1\}^k \times \{0, 1\}^k \to \{0, 1\}^k$ be a function that takes as input bitstrings s1 and s2, where |s1| = |s2|, and returns a new bitstring with the same length, where each bit is the result of the logical AND operator applied to the corresponding bits in s1 and s2, as defined in:

$$OR(s1, s2) = (s1[1] \land s2[1], s1[2] \land s2[2], \cdots, s1[|s1|] \land s2[|s2|])$$

Where \wedge represents the logical AND operator.

CONCAT

Let $CONCAT(s, n) : \{0, 1\}^k \times \mathbb{Z} \to \{0, 1\}^{k \times n}$ be a function that takes as input bitstring s and positive integer n > 0, and returns a new bitstring with length $n \times |s|$, filled with bits of s in modular fashion, as defined in:

$$CONCAT(s, n) = s \circ s \circ \cdots \circ s$$
 (n times)

Where \circ denotes concatenation, such that the bitstring s is repeated n times, and the result is a bitstring of length $|s| \times n$.

NOT

Let $NOT(s): \{0,1\}^k \to \{0,1\}^k$ be a function that takes as input bitstring s, and returns a new bitstring with the same length, where each bit is the logical inverse of corresponding bit in s, as defined in:

$$NOT(s) = (\neg s[1], \neg s[2], \cdots, \neg s[|s|])$$

Where \neg represents the logical NOT operator.

STRETCH

Let $STRETCH(s, n) : \{0, 1\}^k \times \mathbb{Z} \to \{0, 1\}^{k \times n}$ be a function that takes as input bitstring s and positive integer n > 0, and returns a new bitstring with length $n \times |s|$, where bits from s are mapped to a position n times farther than their original position, and the positions in between are padded with 0s, as defined in:

$$STRETCH(s, n) = (r[1], r[2], \cdots, r[|s| \times n])$$

Where:

$$r[i] = \begin{cases} s[\frac{i}{n}], & \text{if } i \text{ is a multiple of } n \\ 0, & \text{otherwise} \end{cases}$$

In words, the way the recurrence relation (1) works is as follows. Given a bitstring S_{p_n} , representing the *n*-th prime p_n , the next bitstring $S_{p_{n+1}}$ of prime p_{n+1} is obtained by executing a two-step process. The first step is to determine the next prime p_{n+1} , which is equivalent to locating the index of the second occurrence of 1 in S_{p_n} , skipping the first 1 at index 1. (If such a 1 is not found, which only happens when iterating from S_1 to S_2 , and from S_2 to S_3 , then continue searching back from the start of the bitstring, where the first bit is always 1.) The second step is to create the next bitstring $S_{p_{n+1}}$, by concatenating p_{n+1} copies of S_{p_n} , and then for each 1 in the original S_{p_n} , say at index *i*, invert the 1 in $S_{p_{n+1}}$ that is at index $p_{n+1} \cdot i$.

The first bitstrings generated by the recurrence relation are:

Figure 1 shows a visualization of the operations performed when advancing from bitstring S_3 to bitstring S_5 . The 0s are represented as white squares, and the 1s are represented as black squares (a convention used throughout this paper). The numbers in the squares indicate the index of the bit in the bitstring. A, B and C are intermediate registers to show what happens at each step.

Figure 1: Recurrence relation applied to S_3 to obtain S_5

The 0s (the white squares) in a bitstring S_{p_n} have indices that are not coprime with $p_n \#$, which are either the numbers between 1 and p_n , or the numbers we call definite composites. The indices of the 1s (the black squares) in a bitstring S_{p_n} are the numbers that are coprime with $p_n \#$. The 1s after index 1 represent the candidate primes after prime p_n . A candidate prime is either a composite, in which case it will at some iteration be marked as a definite composite, or it is a prime, in which case it will survive all the rounds of elimination until it is found by the NEXT1 operation. The 1s in S_{p_n} , in addition to being candidate primes in subsequent bitstrings. Even if a candidate prime is a composite, say at index c, it still serves its purpose as a generator of candidate primes until $S_{lpf(c)}$, where lpf(c) is the least prime factor of c.

Equivalent to the recurrence relation in (1), bitstring S_{p_n} can be defined more directly as follows:

$$S_{p_n} = (b_1, b_2, \dots, b_{p_n \#})$$

Where $p_n \#$ is the *n*-th primorial, and:

$$b[i] = \begin{cases} 1, & \text{if } i \text{ is coprime with } p_n \# \\ 0, & \text{otherwise} \end{cases}$$

3 Symmetry in the bitstrings

The length of bitstring S_{p_n} , where p_n is the *n*-th prime, is equal to the primorial function $p_n \#$, i.e. the product of all primes up to and including the *n*-th prime.

$$|S_{p_n}| = p_n \# = \prod_{i=1}^n p_i$$
 (2)

The sequence of primorial numbers is listed in OEIS A002110.

The index of the bit halfway a bitstring at $\frac{|S_{p_n}|}{2}$ is its *index of symmetry*. The pattern of 1s and 0s are (modular-) symmetric on either side of this index. In other words, each bitstring S_{p_n} is palindromic. This is because each function (CONCAT, NOT, STRETCH and AND) in the recurrence relation (1) conserves symmetry given symmetric input.

A method for visualizing the overall structure and symmetry of the bitstrings in S is to draw the bitstrings as rows of black and white squares, with each bitstring scaled to equal width, and drawn beneath each other. The symmetry in this fractal-like structure becomes apparent when aligning the indices of symmetry in each bitstring, by simply shifting each bitstring by half a square width to the right, in modular fashion (as if the structure is cylindrical). The result is shown in Figure 2. Each horizontal row corresponds with a bitstring in S. The first row is S_2 , the next row is S_3 , etc.

Figure 2: Fractal structure of the bitstrings in S

If the width of this fractal structure is set to a length of 1, then its height is the sum of the reciprocals of the primorials, which converges very rapidly to 0.70523...

$$\sum_{n=1}^{\infty} \frac{1}{p_n \#} \approx 0.70523 \cdots$$

See the decimal expansion in OEIS A064648. The heights of the bitstrings after S_7 are too small for print, so we represent this convergent area at the bottom as a gray horizontal line. That gray line, slightly enlarged to make it visible, contains all the bitsrings of S from S_{11} to infinity. The surface of the bottom of this structure is undefined, as there is no such thing as the largest prime.

4 Candidate prime k-tuples

Let us investigate the recurrence relation (1) and derive formulations for the distribution of 1s in the bitstrings of S.

When iterating from S_{p_n} to $S_{p_{n+1}}$, the CONCAT function produces p_{n+1} times as many 1s as there are in S_{p_n} , and the NOT-STRETCH operation

eliminates as many 1s as there are in $S_{p_{n-1}}$. Therefore, the number of 1s in S_{p_n} , which we write as $p_n \#_1$, is equal to:

$$p_n \#_1 = \prod_{i=1}^n (p_i - 1) \tag{3}$$

The sequence of $p_n \#_1$ per *n* is listed in OEIS A005867.

 $p_n \#_1$ relates to Euler's totient function ϕ as follows:

p

$${}_{n}\#_{1} = \prod_{i=1}^{n} (p_{i} - 1)$$
$$= \prod_{i=1}^{n} p_{i} \prod_{i=1}^{n} \left(1 - \frac{1}{p_{i}}\right)$$
$$= p_{n}\#\prod_{i=1}^{n} \left(1 - \frac{1}{p_{i}}\right)$$
$$= \phi(p_{n}\#)$$

Let a candidate twin prime be a subsequence in a bitstring that matches (1,0,1). The bitstrings of S are periodic over the entire number line, so we include the candidate twin prime that would be formed when joining the ends of a bitstring, forming the candidate twin prime at index 1 and index $(p_n \# - 1)$. When iterating from S_{p_n} to $S_{p_{n+1}}$, the CONCAT function creates p_{n+1} copies of the candidate twin primes in S_{p_n} , and the NOT-STRETCH operation eliminates 2 candidate twin primes for each candidate twin prime in S_{p_n} . The number of candidate twin primes in S_{p_n} , denoted as $p_n \#_2$, where $p_n > 2$, is as follows:

$$p_n \#_2 = \prod_{i=2}^n (p_i - 2)$$

If $p_n = 2$ then $p_n \#_2 = 1$, because in S_2 we encounter (3, 5) when wrapping around in modular fashion. The sequence of $p_n \#_2$ per *n* is listed in OEIS A059861.

In addition to counting the number of candidate twin primes, $p_n \#_2$ also counts the number of *candidate cousin primes*, i.e. occurrences of bit pattern (1, 0, 0, 0, 1).

 $p_n \#_2$ can be written as:

$$p_n \#_2 = \prod_{i=2}^n (p_i - 2)$$

= $\prod_{i=2}^n (p_i - \frac{2 \cdot p_i}{p_i})$
= $\prod_{i=2}^n p_i \prod_{i=2}^n (1 - \frac{2}{p_i})$
= $\frac{p_n \#}{2} \prod_{i=2}^n (1 - \frac{2}{p_i})$

The bit sequence (1,0,1,0,0,0,1,0,1) is a candidate prime quadruplet. For example, this sequence can be found in S_5 at index 11, corresponding with prime quadruplet (11, 13, 17, 19), a constellation of the form (p, p + 2, p + 6, p + 8). This candidate prime sextuplet is copied 7 times into S_7 , of which $(7 - (4 \cdot 1)) = 3$ survive, at indices 11, 101, 191. These 3 candidate prime quadruplets are copied 11 times into S_{11} , of which $(33 - (4 \cdot 3)) = 21$ survive. These 21 candidate prime sextuplets are copied 13 times into S_{13} , of which 189 survive. The number of candidate prime quadruplets in S_{p_n} , where $p_n > 4$, denoted as $p_n \#_4$, is as follows:

$$p_n \#_4 = \prod_{i=3}^n (p_i - 4)$$

If $p_n \leq 4$ then $p_n \#_4 = 1$, because in S_3 we encounter (5, 7, 11, 13), and in S_2 we encounter (3, 5, 7, 9, 11). The sequence of $p_n \#_4$ per *n* is listed in OEIS A059863.

The bit sequence (1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1) is a candidate prime sextuplet. For example, this sequence can be found in S_5 at index 7, corresponding with the prime sextuplet (7, 11, 13, 17, 19, 23), a constellation of the form (p, p + 4, p + 6, p + 10, p + 12, p + 16). This candidate prime sextuplet is copied 7 times into S_7 , of which only 1 survives, at index 97. This candidate prime sextuplet is copied 11 times into S_{11} , of which 5 survive. These 5 candidate prime sextuplets are copied 13 times into S_{13} , of which 35 survive. The number of candidate prime sextuplets in S_{p_n} , denoted as $p_n \#_6$, where $p_n > 6$, is as follows:

$$p_n \#_6 = \prod_{i=4}^n (p_i - 6)$$

The sequence of $p_n \#_6$ per *n* is listed in OEIS A059865.

The general pattern of *candidate prime k-tuples* is as follows:

Whatever sequence of 1s and 0s can be found in bitstring S_{p_n} , all occurrences of these sequences are copied p_{n+1} times into $S_{p_{n+1}}$, and subtracted as many times as the number of occurrences of these sequences in the original S_{p_n} multiplied by the number of 1s in the common sequence.

The number of candidate prime k-tuples in bitstring S_{p_n} , denoted as $p_n \#_k$, where k > 0, is as follows:

$$p_n \#_k = \prod_{i=\pi(k+1)}^n (p_i - k) \tag{4}$$

For simplicity, from hereon in this paper we define a k-tuple as: a k-tuple is a pattern that is counted by the function $p_n \#_k$.

5 Density of candidate prime k-tuples and the Twin Primes Constant

The average distance between the centers of two nearest candidate prime k-tuples of type k > 0 in S_{p_n} , denoted as $G_{p_n,k}$, is as follows:

$$G_{p_{n},k} = \frac{p_{n}\#}{p_{n}\#_{k}}$$

$$= \frac{\prod_{i=1}^{n} p_{i}}{\prod_{i=\pi(k+1)}^{n} (p_{i} - k)}$$

$$= \frac{p_{(\pi(k+1)-1)}\# \cdot \prod_{i=\pi(k+1)}^{n} p_{i}}{\prod_{i=\pi(k+1)}^{n} (p_{i} - k)}$$

$$= p_{(\pi(k+1)-1)}\# \cdot \prod_{i=\pi(k+1)}^{n} \frac{p_{i}}{p_{i} - k}$$

$$= p_{(\pi(k+1)-1)}\# \cdot \prod_{i=\pi(k+1)}^{n} \frac{1}{1 - \frac{k}{p_{i}}}$$
(5)

Where π is the prime counting function.

Off-topic, it is interesting to note that $G_{p_n,1}$ is related to the Riemann zeta function ζ as follows:

$$\lim_{n \to \infty} G_{p_n,1} = \prod_{i=1}^{\infty} \frac{1}{1 - \frac{1}{p_i}}$$
$$= \zeta(1)$$

The pole at $\zeta(1)$, i.e. the harmonic series, can be interpreted as representing the average distance between primes at infinity. According to analytic continuation, $\lim_{\delta \to 0} \zeta(1 + i \cdot \delta) = \gamma - \infty \cdot i$, where γ is the Euler–Mascheroni constant $\gamma = 0.57721 \cdots$.

We return to the topic of k-tuples.

Let $D_{p_n,k}$ be a measure for the average density of candidate prime k-tuples in bitstring S_{p_n} .

$$D_{p_n,k} = \frac{1}{G_{p_n,k}} = \frac{p_n \#_k}{p_n \#} = \frac{1}{p_{(\pi(k+1)-1)} \#} \cdot \prod_{i=\pi(k+1)}^n (1 - \frac{k}{p_i})$$
(6)

Although the number of candidate k-tuples in S_{p_n} grows primorially with increasing n for any k > 0, the density of candidate k-tuples tends to zero as n goes to infinity. For any k > 0:

$$\lim_{n \to \infty} \frac{p_n \#_k}{p_n \#} = \lim_{n \to \infty} \frac{1}{p_{(\pi(k+1)-1)} \#} \cdot \prod_{i=\pi(k+1)}^n (1 - \frac{k}{p_i}) = 0$$

On the topic of densities, let us consider the distribution of least prime factors over the number line. Let L_{p_n} be the density of positive integers having p_n as its least prime factor. We can express L_{p_n} as follows:

$$L_{p_n} = \frac{p_{n-1}\#_1}{p_n\#} = \frac{\phi(p_{n-1}\#)}{p_n\#}$$
$$= \prod_{i=1}^n \frac{1}{p_i} \cdot \prod_{i=1}^{n-1} (p_i - 1)$$
$$= \frac{1}{p_n - 1} \cdot \prod_{i=1}^n \frac{p_i - 1}{p_i}$$
$$= \frac{1}{p_n - 1} \cdot \prod_{i=1}^n (1 - \frac{1}{p_i})$$

Every positive integer has one least prime factor, therefore, the sum of densities L_{p_n} of all n > 0 is 1.

$$\sum_{n=1}^{\infty} \frac{p_{n-1}\#_1}{p_n\#} = \sum_{n=1}^{\infty} \left(\frac{1}{p_n - 1} \cdot \prod_{i=1}^n (1 - \frac{1}{p_i}) \right) = 1$$
(7)

Where $p_0 \#_1 = 1$.

This expression further illustrates what happens during the elimination process during sieving. At each iteration of the recurrence relation, a thin slice of the candidate primes is eliminated from the concatenated bitstring. The candidate primes that are eliminated are the composite numbers with the new prime as its least prime factor. The pattern of eliminations is just a scaled-up version of the pattern of candidate primes in the previous bitstring, and just as symmetric and uniform. The net result can be interpreted as follows:

During sieving, as the candidate primes are gradually and macroscopic-uniformly being thinned out (become sparser), the net effect is that the average distance between nearest candidate prime k-tuples gradually increases, resulting in clusters of intact candidate prime k-tuples, of which a deterministic number survive in the next iteration.

The rate of change in average distance between neighboring candidate k-tuples depends on k because a candidate k-tuple has k chances of being eliminated per iteration. To illustrate, a candidate single prime has one chance of being eliminated per iteration, and a candidate twin prime has two chances of being eliminated per iteration (and never a double hit in a single iteration). This implies that, per iteration, the rate of change in distance between candidate twin primes is proportional to the rate of change in distance between single candidate primes squared. This is expressed as:

$$G_{p_n,2} \approx \frac{G_{p_n,1}^2}{2 \cdot C_2}$$

Where C_2 is Hardy-Littlewood's Twin Primes Constant, and 2 is to align with their formulation. Solving for C_2 we obtain the original formulation of Hardy and Littlewood.

$$C_{2} = \lim_{n \to \infty} \frac{1}{2} \cdot G_{p_{n},1}^{2} \cdot \frac{1}{G_{p_{n},2}}$$

$$= \lim_{n \to \infty} \frac{1}{2} \cdot \left(\frac{p_{n}\#}{p_{n}\#_{1}}\right)^{2} \cdot \frac{p_{n}\#_{2}}{p_{n}\#}$$

$$= \lim_{n \to \infty} \frac{1}{2} \cdot \left(\prod_{i=1}^{n} \frac{p_{i}}{p_{i}-1}\right)^{2} \cdot 2 \cdot \prod_{i=2}^{n} \frac{p_{i}-2}{p_{i}}$$

$$\equiv \prod_{i=2}^{\infty} \frac{p_{i}}{p_{i}-1} \cdot \prod_{i=2}^{\infty} \frac{p_{i}}{p_{i}-1} \cdot \prod_{i=2}^{\infty} \frac{p_{i}-2}{p_{i}}$$

$$\equiv \prod_{i=2}^{\infty} \frac{p_{i}}{p_{i}-1} \cdot \prod_{i=2}^{\infty} \frac{p_{i}-2}{p_{i}-1}$$

$$\equiv \prod_{i=2}^{\infty} \frac{p_{i} \cdot (p_{i}-2)}{(p_{i}-1)^{2}}$$

$$\equiv \prod_{i=2}^{\infty} \left(1 - \frac{1}{(p_{i}-1)^{2}}\right)$$

$$\approx 0.6601618 \cdots$$

This result demonstrates that the distributions of candidate k-tuples in the bitstrings of S are compatible with the results from Hardy and Littlewood using their circle method.

6 At the border between candidate primes and definite primes

The indices of the candidate primes (the 1s) in bitstring S_{p_n} after index p_n and before p_n^2 are the prime numbers between p_n and p_n^2 . These indices are prime because in S_{p_n} the index of the first 1 that is composite is at p_{n+1}^2 . The next composite after that is at $(p_{n+1} \cdot p_{n+2})$, followed by either p_{n+2}^2 or $(p_{n+1} \cdot p_{n+3})$. Figure 3 shows where this relatively microscopic region is located in the overall bitstring.

Figure 3: p_n^2 - the border between candidate primes and definite primes

When the sieve completes its iteration of generating bitstring S_{p_n} , then from the sieve's perspective, not yet knowing p_{n+1} , the candidate primes between p_n and p_n^2 are definite primes. For this reason, we say that p_n^2 is the border between the candidate primes and the definite primes, or the border of candidate elimination. When observing bitstring S_{p_n} as n increases, the border of candidate elimination travels with a velocity of p_n^2 along the number line, into a stationary and right-ward growing structure that is gradually and symmetrically being thinned out. At each iteration, the border of candidate elimination passes over a non-empty set of 1s, which in itself proves there are infinitely many primes. As a demonstration of this method, the proof of the infinitude of primes can be written as follows:

(Yet another) proof that there are infinitely many primes The distance between p_n^2 and p_{n+1}^2 , or the sequence OEIS A069482, is relatively smallest when p_n and p_{n+1} are twin primes, at which point the distance between p_n^2 and p_{n+1}^2 is $4p_n + 4$, or $4p_{n+1} - 4$. A jump from p_n^2 to p_{n+1}^2 therefore always covers a distance of at least $4p_n + 4$. The largest distance between candidate primes in S_{p_n} is $2p_{n-1}$, and therefore the lower bound of the number of candidate primes between p_n^2 and p_{n+1}^2 is at least $\frac{4p_n+4}{2p_{n-1}}$, which is at least 2. \Box

Alas, there is no equivalent and easy proof of the infinitude of twin primes. For reference, the largest distance (from middle to middle) between candidate twin primes in S_{p_n} per *n* is listed in OEIS A144311 (plus 1). The largest distance between candidate twin primes is not always smaller than 4p + 4. For example, in S_{17} the largest distance between candidate twin primes from middle to middle is 108, which is greater than $19^2 - 17^2 = 72$. However, the average number of candidate twin primes per distance $(p_{n+1}^2 - p_n^2)$ does increase with increasing *n*.

If we assume the candidate twin primes are uniformly distributed throughout S_{p_n} , which on the macroscopic scale is so, we can estimate how many

candidate twin primes exist on average in a relatively microscopic region between p_n^2 and p_{n+1}^2 . We express this as follows:

$$\pi_2(p_{n+1}^2) - \pi_2(p_n^2) \approx \frac{(p_{n+1}^2 - p_n^2)}{2} \cdot \prod_{i=2}^n \frac{p_i - 2}{p_i}$$

Where $\pi_2(x)$ is the number of twin primes less than x.

If the distribution of candidate twin primes in the bitstrings is uniform on average then we can expect:

$$\lim_{n \to \infty} \frac{\pi_2(p_{n+1}^2) - \pi_2(p_n^2)}{\frac{(p_{n+1}^2 - p_n^2)}{2} \cdot \prod_{i=2}^n \frac{p_i - 2}{p_i}} = 1$$
(8)

In general, if the candidate primes and candidate k-tuples are on average uniformly distributed throughout S_{p_n} , the average number of candidate prime k-tuples of type k between p_n^2 and p_{n+1}^2 , denoted as A_{k,p_n} , is as follows:

$$\pi_{k}(p_{n+1}^{2}) - \pi_{k}(p_{n}^{2}) \approx A_{k,p_{n}}$$

$$A_{k,p_{n}} = \frac{p_{n+1}^{2} - p_{n}^{2}}{G_{p_{n},k}}$$

$$= \frac{p_{n+1}^{2} - p_{n}^{2}}{\frac{p_{n}\#}{p_{n}\#_{k}}}$$

$$= (p_{n+1}^{2} - p_{n}^{2}) \cdot \frac{p_{n}\#_{k}}{p_{n}\#}$$

$$= \frac{p_{n+1}^{2} - p_{n}^{2}}{p_{(\pi(k+1)-1)}\#} \cdot \prod_{i=\pi(k+1)}^{n} \frac{p_{i} - k}{p_{i}}$$
(9)

Where $\pi_k(x)$ is the number of prime k-tuples of type k less than x (more precise: k-tuples having a center index less than x).

 A_{k,p_n} increases with increasing n, albeit slowly for large k. On average, according to A_{k,p_n} , a region swept by p_n^2 at each iteration captures ever more candidate prime k-tuples with increasing n. This means that, on average, if we assume uniform distribution of candidate k-tuples in S_{p_n} , that at each iteration of the recurrence relation ever more candidate prime k-tuples become definite prime k-tuples. This is expressed as follows. For any k-tuple k > 0:

$$\lim_{n \to \infty} A_{k,p_n} = \lim_{n \to \infty} \left(\frac{p_{n+1}^2 - p_n^2}{p_{(\pi(k+1)-1)} \#} \cdot \prod_{i=\pi(k+1)}^n \frac{p_i - k}{p_i} \right) = \infty$$
(10)

This result in itself is not yet a strong proof of the K-tuple Conjecture because it makes assumptions about the uniformity of the distribution of candidate prime k-tuples in a relatively microscopic region of a bitstring. For each k we know exactly how many candidate prime k-tuples exist in S_{p_n} , but these numbers do not tell us their exact locations. We know the constellations are distributed uniformly at the macroscopic level, by definition, and we know the constellations are stationary structures relative to the number line, but we have not explicitly disproved the possibility that after some large prime there somehow emerges some rogue wave of bias toward eliminating candidate prime k-tuples of type k ahead of p_n^2 . To investigate whether such phenomena are even possible in the sieve's mechanism, let us extend the bitstring model, as to study more deeply the symmetries in the process of eliminating candidate primes, as to better understand what is happening during the NOT-STRETCH operation. Our goal from here is to isolate the "candidate prime eliminator" as a mathematical object, dissected away from the candidate primes. Our goal is to discover which parameters play a defining role, and investigate whether there theoretically exists the possibility for the emergence of a sustained rogue wave of bias toward eliminating all k-tuples of type k ahead of p_n^2 . Note that we are free to change the design or representation of a prime-generating sieve or recurrence relation, provided that the information in its instructions and state is conserved.

7 The Bitmatrix Sieve

A bitstring S_{p_n} can be shaped into a $p_n \times p_{n-1} \#$ matrix. Such a matrix we call a *bitmatrix*. The benefit of this extra dimension is that it reveals more clearly the symmetries in the process of eliminating candidate primes, and how this relates to the residue systems encoded in the bitstrings.

Let M be the set of bitmatrices formed from the bitstrings in S. As an example, the bitmatrices M_5 and M_7 are shown in Figure 4.

M_{ξ}	5																						k	ey					
1	2	3	4	5	6																			i	0				
7	8	9	10	11	12																			i	1				
13	14	15	16	17	18																			i	in	dez	x		
19	20	21	22	23	24																								
25	26	27	28	29	30																								
1M	7	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	50
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210

Figure 4: Bitmatrices M_5 and M_7

Zooming out, we can just about get bitmatrix M_{11} in full view, as shown in Figure 5.

Figure 5: Bitmatrices M_2 - M_{11}

In this matrix format, the candidate primes (black squares) are arranged in columns. Each black column has exactly one white square, because exactly one of these numbers will be divisible by prime p_n . These single white squares per black column is the process of eliminating candidate primes in action. The multiples of p_n are distributed as a saw-tooth pattern across the table because the width of the table is not divisible by its height. When sieving bitmatrices, we observe that the black columns remain in place until its top square turns

white, either because it is a composite (having the new prime as its least prime factor), or when it is processed as being the next prime. In this matrix-view we observe more clearly (than was already visible in the bitstrings of S) that the overall structure of the candidate primes remains stationary relative to the number line, further justifying the interpretation of p_n^2 as being something that travels with that speed over a stationary structure. Furthermore, we observe, by interpreting n as time, that the top row of the bit matrix represents the near-future, and the bottom row represents the far-future, with the index of symmetry representing the mid-future. An elimination in the bottom row of the matrix will take the sieve eons before it reaches it, and notice it as an extra gap in the search for the next prime.

From the bitmatrices in M we derive a new sieve, the *bitmatrix sieve*.

Let M be the set of outputs generated by the bitmatrix sieve. For each prime p_n there is a matrix M_{p_n} in M:

$$M = \{M_2, M_3, M_5, M_7, M_{11}, \dots\}$$

Each matrix M_{p_n} is a *bitmatrix*, a matrix of binary digits. The referencing of entries in the bitmatrix is by a single 1-based index, where $index = column + ((row - 1) \times width)$. For example, in bitmatrix M_3 with 6 columns, bit b_7 at M[7] refers to the first bit (column 1) in the second row. The format of a bitmatrix is:

b_1		$b_{columns}$
	•••	
$b_{((rows-1)\times columns)+1}$		$b_{rows \times columns}$

Where each $b_i \in \{0, 1\}$.

The recurrence relation that generates the set M is as follows.

Initial condition:

Let M_2 be the first member of M, a 2×1 bitmatrix.

$$\mathbf{M_2} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

Recurrence relation:

Given bitmatrix M_{p_n} , where p_n is the *n*-th prime, the next bitmatrix $M_{p_{n+1}}$ is obtained by:

 In bitmatrix M_{p_n}, starting after index 1, locate the next occurrence of bit value 1. Let p_{n+1} be this index.

- Let $M_{p_{n+1}}$ be a $p_{n+1} \times p_n \#$ bit matrix. The contents of $M_{p_{n+1}}$ is filled as follows.
 - Fill each row in $M_{p_{n+1}}$ with a flattened copy of M_{p_n} . To flatten is to reshape the matrix such that all rows are concatenated to form a matrix with a single row (essentially forming bitstring S_{p_n}).
 - In each column in $M_{p_{n+1}}$ that is filled with 1s, zero the entry that has an index that is divisible by p_{n+1} .

Equivalently, bitmatrix M_{p_n} can be defined more directly as follows:

$$\mathbf{M}_{\mathbf{p}_{n}} = \begin{bmatrix} b_{1} & \dots & b_{p_{n-1}\#} \\ \dots & \dots & \dots \\ b_{((p_{n}-1)\times p_{n-1}\#)+1} & \dots & b_{p_{n}\times p_{n-1}\#} \end{bmatrix}$$

Where:

$$b_i = \begin{cases} 1, & \text{if } i \text{ is coprime with } p_n \# \\ 0, & \text{otherwise} \end{cases}$$

A bitmatrix's index of symmetry is the bit halfway its index. For example, the index of symmetry of M_7 is at index $\frac{7\#}{2} = 105$. A bitmatrix is centrosymmetric, meaning that pairs of entries that are on opposite sides of the index of symmetry, i.e. having indices that add up to p#, always have the same bit value. A bitmatrix has an even number of columns therefore its index of symmetry lies half a column to the left of its geometric center. Notice that this "half-an-integer shift to align with symmetry" is a recurring theme in all representations of the sieve.

8 Residue Systems and Elimination Masks

As is visible in Figure 4 and Figure 5, the candidate primes (black squares) are grouped in *black columns*. In bitmatrix M_{p_n} there are $p_{n-1}\#_1$ such black columns. Each black column has exactly one white square because the indices in each column of M_{p_n} form a complete residue system (mod p_n), such that each column has exactly one entry that is divisible by p_n . Furthermore, any horizontal sequence of p_n entries also form a complete residue system (mod p_n). Therefore, any $p_n \times p_n$ section of M_{p_n} contains a set of all rotations of the complete residue system (mod p_n). We can therefore interpret the elimination process as a $p_n \times p_n$ elimination mask being applied repeatedly along the matrix. Let us proceed with this approach and isolate a description of the eliminator as an elimination mask.

In bitmatrix M_{p_n} , the elimination mask is applied $\frac{p_{n-1}\#}{p_n}$ many times, which is never a whole number, leaving a relatively small fractional part of $\frac{p_n \mod p_{n-1}\#}{p_n}$. The elimination masks are center-aligned around the index of symmetry, and the last column is always aligned such that it intersects the bottom row that is a multiple of p_n . The elimination masks are therefore entrosymmetrically placed, just like the 1s in the bitmatrix. Figure 6 shows the E_7 elimination masks highlighted in green in bitmatrix M_7 . Red borders are drawn around each elimination mask.

Figure 6: M_7 with E_7 elimination masks (i.e. multiples of 7) highlighted in green

The elimination mask E_{p_n} for M_{p_n} is a $p_n \times p_n$ bitmatrix, defined as:

$$\mathbf{E}_{\mathbf{p}_{n}} = \begin{bmatrix} b_{1} & \dots & b_{p_{n}} \\ \dots & \dots & \dots \\ b_{((p_{n}-1)\times p_{n})+1} & \dots & b_{p_{n}\times p_{n}} \end{bmatrix}$$

Where:

$$b_i = \begin{cases} 0, & \text{if } T_{p_n}(i) \text{ is divisible by } p_n \\ 1, & \text{otherwise} \end{cases}$$
(11)

Where:

$$T_{p_n}(i) = \frac{p_{n-1}\#}{2} - \frac{p_n - 1}{2} + ((i-1) \mod p_n) + \left\lfloor \frac{i-1}{p_n} \right\rfloor \cdot p_{n-1}\#$$

Note that the elimination mask is almost equivalent to the *NOT-STRETCH* operation in the bitstring sieve, except that the elimination mask contains less information, as it will indiscriminately double-eliminate the numbers that are already marked as composite, and have no knowledge upfront about which

candidate primes it eliminates. We have now isolated the eliminator as a mathematical object, but this elimination mask approach does not quite produce the description we seek. We seek a more direct formulation of which row in a given column is eliminated.

9 Isolating the candidate prime eliminator

As an alternative to the elimination-mask approach, a more minimal description of the candidate prime eliminator is that of a single diagonal line, or rather, a coil around a cylinder. A bitmatrix is modular, such that its ends can be joined together to form a cylinder, either by joining the horizontal ends, or by joining the vertical ends. In other words, a bitmatrix can be interpreted as a torus. There are two ways of wrapping the coil of elimination around the bitmatrix, either by $(\mod p_{n-1}\#)$ or by $(\mod p_n)$. We can either wrap around the bitmatrix in horizontal direction while stepping down, or wrap around vertically while stepping right. The first option rotates around the cylinder with a period of $(\mod p_{n-1}\#)$ steps, while the second option rotates around the cylinder with a period of $(\mod p_n)$ steps. The first option corresponds more directly to the definition of the initial recurrence relation, but it is the second option for which we seek a formulation because we are interested in knowing which row of a black column is eliminated in the next iteration.

Shown in the right side of Figure 7 is an illustration of the candidate prime eliminator, a mathematical object that resides in a cylinder. The other side of the cylinder (within the same torus), shown on the left, hosts the candidate primes. The coordinate systems of the two cylinders are inverses of each other, and transforming one into the other is akin to turning a punctured torus inside-out, whilst ensuring the symmetries are maintained.

Figure 7: The two cylinders in the torus of M_7 . Left cylinder contains the candidate primes, right cylinder contains the candidate prime eliminator.

We seek a formula for J_{p_n} , the increment in row index modulo p_n per increment in column index. J_{p_n} is an integer greater than 0 and less than p_n . Knowing J_{p_n} allows us to describe the candidate prime eliminator for M_{p_n} with just two parameters, p_n and J_{p_n} , since we know its center is 0 (mod p_n). The congruence relations are as follows.

$$T_{p_n}(\frac{p_n^2}{2}+1) \equiv 0 \pmod{p_n}$$

$$T_{p_n}(\frac{p_n^2}{2}+1) + 1 + J_{p_n} \cdot p_{n-1} \# \equiv 0 \pmod{p_n}$$

Therefore:

$$1 + J_{p_n} \cdot p_{n-1} \# \equiv 0 \pmod{p_n}$$

With J_{p_n} we have a formulation for the candidate prime eliminator in bitmatrix M_{p_n} , which can can be thought of as a rotating object that passes from left to right over the bitmatrix, rotating with a frequency of $\frac{2 \cdot \pi \cdot J_{p_n}}{p_n}$ radians per column shift. J_{p_n} can be any integer value greater than 0 and less than p_n , any choice will ensure a periodic visit to each row per shift in p_n columns, but J_{p_n} is the only integer greater than 0 and less than p_n such that the eliminator passes through both p_n and the index of symmetry.

 J_{p_n} answers the question: how many times to add $p_{n-1}\#$ to p_n for it to be divisible by p_n . To isolate J_{p_n} involves finding the modular inverse of $p_{n-1}\#$ modulo p_n . Finding the modular inverse requires first knowing the specific numbers of the congruence relations, implying there is no direct formula for calculating J_{p_n} . It is a puzzle that you can only start to attempt solving after knowing $p_{n-1}\#$. When $p_{n-1}\#$ and p_n are both known, J_{p_n} can be calculated by an algorithm, such as by sieving, or by exhaustively searching by adding and checking divisibility, or by the Extended Euclidean Algorithm.

With known J_{p_n} we have a formula for determining $R_{p_n}(c)$ in M_{p_n} , the "row index of elimination", for any given column index $c \ge 1, c \le p_{n-1}#$.

$$R_{p_n}(c) = 1 + ((J_{p_n} \cdot c) \mod p_n)$$

Values of J_p for the first 6 primes:

$$J_2 = 1$$

 $J_3 = 1$
 $J_5 = 4$
 $J_7 = 3$
 $J_{11} = 10$
 $J_{13} = 10$

The sequence of J_{p_n} per *n* is listed in A081617.

The distribution of J_{p_n} is the same as the distribution of throwing $(p_n - 1)$ -sided dice. This result implies that on average each row in a bitmatrix will have near-equal numbers of eliminations. The distribution of J_{p_n} is stochastic, such that:

$$\lim_{n \to \infty} \frac{\sum_{q=1}^{n} \frac{J_{p_q}}{p_q}}{n} = \frac{1}{2}$$
(12)

This result implies there cannot be any sustained bias for near-future eliminations over far-future eliminations, and therefore impossible for some everlasting rogue wave of bias to appear after some large prime that purposely targets all candidate k-tuples of given k > 0 as to eliminate them all ahead of p^2 . Furthermore, the result of J_{p_n} , particularly when n is large, has very little impact on the distribution of eliminations per row in the bitmatrix. With increasing n, the number of eliminations in each row approaches the average value of $\frac{p_{n-1}\#_1}{p_n}$.

To remove all doubt, even if the values of J_{p_n} were not stochastic, its impact is not enough to create any significant bias. If there were a demon in the sieve that manipulates the result of J_{p_n} , purposely targeting all candidate k-tuples of type k ahead of p_n^2 , the number of eliminations per row remains nearly the same. To illustrate this scenario, Table 1 shows the number of candidate primes eliminated per row in bitmatrix M_{11} , for all possible manipulations of J. The column $J_{11} = 10$ represents the actual value for J_{11} . Notice how the manipulations of J have no impact on the first row. It means that the result of J has no significant impact on the near future, let alone what happens ahead of p_n^2 . It means that, from the perspective of p_n^2 , the distribution of 1s in bitstring S_{p_n} , and its k-tuples, is uniform on average per iteration.

		manipulated J													
		1	2	3	4	5	6	7	8	9	10				
row	1	4	4	4	4	4	4	4	4	4	4				
	2	4	5	6	3	5	5	4	4	3	4				
	3	5	4	4	5	4	6	3	3	4	5				
	4	3	4	4	5	3	5	5	4	6	4				
	5	6	5	3	4	3	4	4	5	5	4				
	6	3	4	5	6	4	4	4	5	3	5				
	7	5	3	5	4	4	4	6	5	4	3				
	8	4	5	5	4	4	3	4	3	5	6				
	9	4	6	4	5	5	3	5	4	4	3				
	10	5	4	3	3	6	4	5	4	4	5				
	11	4	3	4	4	5	5	3	6	5	4				

Table 1: Candidate eliminations per row per manipulation of J in M_{11}

In this table for M_{11} the differences between rows are still relatively large, when compared with the average value of $4\frac{4}{11}$, but in the tables for larger primes the differences in the eliminations per row get relatively smaller, all gradually approaching the average value of $\frac{p_{n-1}\#_1}{p_n}$. For example, in M_{19} the average number of eliminations per row is $4850\frac{10}{19}$, and the actual values range from 4846 to 4854. These differences are too small to create any significant bias toward eliminating particular candidate prime k-tuples ahead of p_n^2 , especially when n is large. It is therefore impossible for a sustained wave of elimination to emerge after some large prime.

These results imply that A_{k,p_n} , the average number of candidate prime k-tuples of type k > 0 within a region of length $(p_{n+1}^2 - p_n^2)$, increases on average with increasing n. We conclude that the prime k-tuples are distributed as statistically predicted by Hardy and Littlewood.

10 Proof of the K-tuple Conjecture

In the recurrence relation that defines the primes, such as in the bitstring sieve or bitmatrix sieve, symmetry and modularity of the candidate primes (coprimes with the primorial) is conserved at the primorial scale. When the sieve is sieving, when the candidate primes are gradually and macroscopically uniformly being thinned out (become sparser), the net effect is that the average distance between nearest candidate prime k-tuples gradually increases, resulting in clusters of intact candidate prime k-tuples, of which a deterministic number survive in the next iteration.

If we were to watch the state space of the sieve as an animation per iteration, we would observe a giant growing symmetrical structure, slowly being eaten away at the outer edges one by one, with a thin slice of candidate primes eliminated at each iteration. The border of candidate elimination passes over the left side (relative to the number line) of this structure with a "speed" of p_n^2 , passing over gradually increasing numbers of candidate prime k-tuples of all sizes at each iteration. A_{k,p_n} , the average number of candidate k-tuples in S_{p_n} between p_n^2 and p_{n+1}^2 , increases with increasing *n*. On average, at each iteration, more and more candidate prime k-tuples become definite prime k-tuples.

$$\lim_{n \to \infty} A_{k, p_n} = \lim_{n \to \infty} \left(\frac{p_{n+1}^2 - p_n^2}{p_{(\pi(k+1)-1)} \#} \cdot \prod_{i=\pi(k+1)}^n \frac{p_i - k}{p_i} \right) = \infty$$

The candidate prime eliminator of the bitmatrix sieve, which has a frequency proportional to J_{p_n} , is the modular diagonal line that eliminates the multiples of p_n . Calculating J_{p_n} requires knowledge of $p_{n-1}\#$, and involves solving a congruence puzzle, which becomes more and more difficult to solve as p_n gets larger. Therefore, it is cryptographically guaranteed that the distribution of J_{p_n} is stochastic, as is guaranteed by the fact that primes do not divide each other. Therefore:

$$\lim_{n \to \infty} \frac{\sum_{q=1}^{n} \frac{J_{p_q}}{p_q}}{n} = \frac{1}{2}$$

The distribution of J_{p_n} (OEIS A081617) is the same as the distribution of throwing $(p_n - 1)$ -sided dice. It implies, that while n increases, there will on average be more and more candidate prime k-tuples surviving the eliminations until p_n^2 passes over them. Furthermore, we can always find larger primes with larger values of A_{k,p_n} , as to include more and more statistically expected candidate k-tuples between p_n^2 and p_{n+1}^2 .

The symmetries maintained by the recurrence relation that defines the primes prohibit any possibility of sustained local phenomena, let alone a rogue "bow wave" of elimination to somehow persistently emerge ahead of p_n^2 after some large prime. Such phenomena are guaranteed not to happen, guaranteed by the fact that primes do not divide each other. Furthermore, to remove all doubt, even if J_{p_n} 's value somehow goes rogue after some large prime, such that J_{p_n} always returns the value that most favors the elimination of candidate k-tuples of type k ahead of p_n^2 , as to forever prevent any of them from becoming definitely prime, it does not work, because the impact of the result of J_{p_n} is just noise in the overall distribution, especially when p_n is large.

By the time a large composite candidate prime is eliminated before p_n^2 passes over, it has spawned an enormous number of offspring candidate primes, which in turn keep spawning countless new candidate primes, even after the original composite is eliminated. The candidate prime eliminator has no chance of stopping all k-tuples of type k before p_n^2 . We conclude that no matter how many times you sieve, there will forever be new opportunities for candidate prime k-tuples to survive the eliminators and reach p_n^2 as to become definite prime k-tuples.

11 Conclusion

From these results, we conclude that Hardy and Littlewood's formulations of statistical predictions concerning k-tuples and twin primes are correct. There exist infinitely many twin primes and prime k-tuples, occurring at asymptotic frequency, as predicted by Hardy and Littlewood.

References

- G. H. Hardy and J. E. Littlewood. "Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes". In: *Acta Mathematica* 44 (1923), pp. 1–70. DOI: 10.1007/BF02403921. URL: https://doi.org/10.1007/BF02403921.
- Pete Quinn. Newbie Question Sieving based on primorial patterns and symmetry. 2011. URL: https://www.primegrid.com/forum_thread.php?id=2991.
- [3] Dennis R. Martin. *Proofs Regarding Primorial Patterns*. 2006. URL: https://oeis.org/A005867/a005867.pdf.
- [4] Dennis R. Martin. On the Infinite Series Characterizing the Elimination of Twin Prime Candidates. 2006. URL: https://oeis.org/A121406/a121406.pdf.
- [5] Mario Ziller. On differences between consecutive numbers coprime to primorials. 2020. URL: https://arxiv.org/abs/2007.01808.
- [6] Fred B. Holt. Patterns among the Primes: A study of Eratosthenes sieve. Kindle Direct Publishing, 2022. ISBN: 9798831607314. URL: https://www.amazon.com/dp/B0B2TY72XJ/.